Seguimiento

Placas Tectónicas

Placas Tectónicas


Una placa tectónica o placa litosférica es un fragmento de litosfera que se mueve como un bloque relativamente rígido sobre la astenosfera
(manto superior) de la Tierra. La palabra
tectónica deriva del griego antiguo τέκτων, τέκτωνος: nominativo y genitivo de singular de constructor, carpintero, y del sufijo
ικα: relativo a.

La tectónica de placas es la teoría que explica la estructura y dinámica de la superficie terrestre. Establece que la litosfera (la zona dinámica superior más externa y rígida de la Tierra) está fragmentada en una serie de placas que se desplazan sobre la astenosfera.

Esta teoría también describe el movimiento de las placas, sus direcciones e interacciones. La litosfera terrestre está dividida en grandes placas y en otras menores o micro placas. En los bordes de las placas se concentra actividad
sísmica, volcánica y tectónica. Esto da lugar a la formación de grandes cadenas y cuencas.
Litosfera


La Tierra es el único planeta del sistema solar con placas tectónicas activas, aunque hay evidencias de que en tiempos remotos Marte, Venus y alguno de los satélites, como Europa, fueron tectónicamente activos.

Aunque la teoría de la tectónica de placas fue formalmente establecida en las décadas de 1960 y 1970, en realidad es producto de más de dos siglos de observaciones geológicas y geofísicas.

En el siglo XIX se observó que en el pasado remoto de la Tierra existieron numerosas cuencas sedimentarias, con espesores estratigráficos de hasta diez veces los observados en el interior de los continentes, y que –posteriormente– procesos desconocidos las deformaron y originaron cordilleras: sucesiones montañosas de enormes dimensiones que pueden incluir sierras paralelas.







Corteza Terrestre
A estas cuencas se les denominó geosinclinales, y al proceso de deformación, orogénesis. Otro descubrimiento del siglo XIX fue una cadena montañosa o dorsal en medio del océano Atlántico, que observaciones posteriores mostraron que se extendía formando una red continua por todos los océanos. Un avance significativo en el problema de la formación de los geosinclinales y sus orogenias ocurrió entre 1908 y 1912, cuando Alfred Wegener, al mirar las líneas de costa a ambos lados del Océano Atlántico y tras considerar cierta información geológica (rocas del mismo tipo y edad coincidían con otras situadas hoy en día a larga distancia), paleontológica (encontró fósiles de los mismos animales terrestres en continentes separados) y paleo climática (supuso que al norte se hallaban bosques tropicales y al sur glaciares), hipotetizó que las masas continentales estaban en movimiento y que se habían fragmentado de un supercontinente que denominó Pangea. Tales movimientos habrían deformado los sedimentos geosinclinales acumulados en sus bordes y originado nuevas cadenas montañosas. Wegener creía que los continentes se deslizaban sobre la superficie de la corteza terrestre bajo los océanos como un bloque de madera sobre una mesa, y que esto se debía a las fuerzas de marea producidas por la deriva de los polos. Sin embargo, pronto se demostró que estas fuerzas son del orden de una diezmillonésima a una centésima de millonésima de la fuerza gravitatoria, lo cual hacía imposible plegar y levantar las masas de las cordilleras.


Mediante la teoría de la Tectónica de placas se explicó finalmente que todos estos fenómenos (deriva continental, formación de cordilleras continentales y submarinas) son manifestaciones de procesos de liberación del calor del interior de la Tierra. Hay cuatro procesos a los que se debe dicho calor:
1.     El más importante es la desintegración de los elementos radiactivos existentes en el manto terrestre, que fundamentalmente son: 40K (potasio 40), 238U (uranio 238), 235U (uranio 235) y 232Th (torio 232).
2.     Los residuos del calor original que la Tierra ha adquirido durante su génesis.
3.     Calor debido al roce por la gravedad, que propicia el desplazamiento de los elementos pesados hacia el centro, y de los ligeros hacia arriba. Al hacerlo, la fricción genera calor.
4.   Al enfriarse, el núcleo incrementa su tamaño. Un fenómeno similar ocurre por enfriamiento del agua, que al hacerlo desprende calor.

 
Corrientes de Convección










Formación Cadenas Montañosas

La forma del relieve terrestre depende en buena medida de las estructuras geológicas, es decir, de cómo estén dispuestos los materiales que la componen. Las estructuras de las formaciones rocosas son de dos clases:
·         Estructuras originales. Son las estructuras que se forman a la vez que la roca, por los mismos procesos petrogenéticos que forman las rocas. Por ejemplo, en las rocas sedimentarias la estructura original típica es en forma de estratos, generalmente paralelos a veces cruzados; en las rocas volcánicas son las coladas y conos; en las rocas intrusivas son los plutones y diques.
·         Estructuras deformadas. Son estructuras alteradas por la aplicación natural de fuerzas dirigidas (esfuerzos) sobre formaciones rocosas preexistentes. Las deformaciones correspondientes alteran la disposición previa de los materiales, que podía a su vez ser una estructura de tipo original o ser ya el resultado de alguna deformación anterior.
Creación de las Cordilleras






De acuerdo con estos conceptos, la tectónica forma parte de la geología estructural, aquella que se centra en las estructuras de deformación, sin situar en su centro las estructuras de tipo original. En la práctica, los términos tectónica y la geología estructural suelen usarse como sinónimos.



0 comentarios:

Publicar un comentario